Impact of Sequence
Figure 1. Runs covered in the top graph used progressively increasing pressure while those in the bottom graph randomized the order of the pressure.
Real-World Examples
Let’s now look at several actual applications of DOE in pilot plants to quantify the effects of factors, singly and in combination, while ensuring the statistical validity of the results. All these examples used Design-Expert software from Stat-Ease, Inc.
Our first case involves a pilot plant designed to study carbon sequestration using an organic compound to absorb CO2 from flue gas. During early runs, a white precipitate formed under certain conditions. Engineers used DOE to manage a series of tests aimed at revealing under what conditions the precipitate would form. The runs showed that controlling the amount of water used in the reaction could eliminate the precipitate. Furthermore, optimizing the water content also boosted the capability of the process to capture CO2. The result was a significant increase in the performance/cost ratio of the new process.
The second example relates to a pilot plant to optimize an oil-mist recovery system for improving the efficiency of a large power plant. A literature search revealed that product collection most likely depended upon velocities and pressure drops and was nonlinear in its response. However, raising the pressure increases the amount of energy required to operate the recovery system, which, in turn, boosts operating costs. DOE was used to model the sample density (the inverse of product recovery) as a function of the differential pressure and the spray volume. As Figure 2 shows, the results identified interactions between the factors that would have made optimizing their values impossible by testing each variable in isolation. With DOE, engineers found the lowest possible pressure drop that provided a suitably high yield while running the minimum number of tests.
Our third case focuses on evaluating a new catalyst for a process to convert syngas to alcohol that could be used as fuel. The pilot plant had to assess many factors — e.g., the H2/CO ratio, temperature, gas hourly space velocity (a measure of how fast gas flows over the catalyst) and the proportion of gas recycled. Optimizing alcohol yield was the key goal but other issues included the proportion of methanol to ethanol, tail-gas composition and the rate at which the catalyst degrades. DOE optimized the performance of the catalyst and led to development of a new method to prevent catalyst degradation. The catalyst itself turned out not to be viable; however, the patent on the method to stop deactivation of the catalyst was sold for several million dollars.