Two-Step Process
Figure 1. ϒ-valerolactone is converted to butenes that then undergo oligomerization to form alkenes.
Source: University of Wisconsin -- Madison.The process has achieved high conversions of GVL and butenes and greater-than-75% yield of C
8+ alkenes, they report in a recent paper in
Science. "The hydrocarbons produced from GVL in this new process are chemically equivalent to those used in the present infrastructure," notes David Alonso, a member of the research team. "The product we make is ready for the jet fuel application and can be added to existing hydrocarbon blends, as needed, to meet specs," he says. Moreover, the process relies on inexpensive, stable and easily regenerable commercial solid acid catalysts, not precious metal ones, says Dumesic. There's room for improvement, though. Yield of high-molecular-weight alkenes would greatly benefit from development of a water-tolerant butene oligomerization catalyst. The researchers believe that coupling GVL decarboxylation with butene oligomerization in a single continuous system at elevated pressures should be possible; this would reduce overall capital costs and avoid the need for a compressor once operation reaches a steady state. On an industrial scale, Dumesic foresees the process being part of an integrated biorefinery. It would catalytically convert biomass to levulinic acid, use the acid to make GVL, and the GVL to make alkenes, while using residual biomass to produce steam and electricity. That's a ways off, though. The GVL-to-alkenes process has been demonstrated on a laboratory scale only within the last six months and pilot scale trials are several years away, says Dumesic. "The bottleneck in having the fuel ready for prime time is the availability of cost-effective GVL," he notes. Work is underway at the school to develop more efficient methods for making GVL from biomass such as wood, corn stover and switchgrass. "Once the GVL is made effectively, this is an excellent way to convert it to jet fuel." Meanwhile, Biofine Renewables, Waltham, Mass., already is producing levulinic acid from cellulosic materials at a demonstration plant in Gorham, Me., and considering large-scale plants (see:
www.ChemicalProcessing.com/articles/2010/016.html).