An industrial facility needed to heat 2,600 gpm of water to 60°F from 35°F to prepare it for biological treating. The site had no existing steam or other thermal loads generating low-level heat. The only major sources of energy available were pipeline natural gas and electricity.
[pullquote]
Both the water rate and temperature varied seasonally. In addition, contaminants made the water highly fouling. An initial experiment using a small direct-fired heater quickly failed due to high fouling rates.
Liquid velocity and liquid temperature affect fouling -- the faster the velocity and the lower the temperature, the lower the fouling rate. Usually the most important temperature in exchanger fouling in a heater, is the film temperature of the fouling fluid, not the bulk temperature. Fire-exposed tube heaters have high fireside metal temperatures, which lead to high film temperatures. The high film temperatures created extremely high fouling rates.
Water rate variations made the problem worse. Occasional low flows decreased velocity and increased residence time in the heater. Low velocity allows fouling to stick more readily. Long residence time results in rapid fouling because liquid stays longer in the high-temperature liquid film.
Techniques for raising velocity and residence time include using multiple small heaters and recirculation systems. Multiple units boost capital requirements. Recirculating some hot water from the outlet fluid back to the inlet increases velocity and decreases residence time but elevates water temperature. The benefits, or costs, of circulation systems depend on the tradeoff between velocity and time versus temperature.