Figure 2. This type of exchanger predominates in a wide variety of applications.
The second letter refers to an E-type shell — a design with one shell inlet nozzle and one shell outlet nozzle at opposite ends of the exchanger. The third letter refers to the rear head type, in this case U-tubes instead of an internal head. The U-tube forces an even number of tube passes in the exchanger. When more than one tube pass is used, the exchanger cannot have true counter-current flow. The exchanger depicted is a 1-2 exchanger (one shell pass, two tube passes).
Inspection of the hot stream and cold stream flow lines immediately indicates a major limitation (Figure 2). The outlet location of the hot stream doesn’t match up with the inlet location of the cold stream. Additionally, the path of the shell-side fluid crosses back and forth across the path of the tube-side fluid. Exchanger design takes this into account by multiplying the calculated log mean temperature difference (LMTD) by a correction factor F determined by the exchanger geometry. The practical and theoretical limitations of the cross flow mean that once the cold outlet temperature rises above the hot outlet temperature extra surface has no benefit. In a single 1-2 exchanger, the outlet temperatures cannot cross (actually they can slightly cross, but not very much).
Once you have a TQ curve for a proposed exchanger service, you can step off a series of lines to show the minimum number of 1-2 (or more complex) shells required. In this case it’s three. However, design optimization showed four shells to be most economic.
Understanding the 1-2 exchanger limitation quickly allows identification of constraints in existing systems and minimum requirements for new systems. While other exchanger choices can address these constraints, nevertheless, for very good technical reasons TEMA E-type shells will remain the most common heat-exchanger type. We should all understand the implications of this.