Casings Compared
Figure 1. Typical volute casing (left) has no wear, while noisy pump's casing has wear at inlet as shown by annular ring at inlet nozzle.
Upon startup we noticed an immediate improvement in ambient vibration and noise level. Indeed, the pump now was running very quietly and smoothly. Vibration level had fallen by 90% to 0.05 in./sec., well within acceptable levels, from an average 0.4 to 0.5 in./sec.
The casing wear stemmed from routine processing. Solids within the pumping solution eventually eroded the inlet area of the volute case, resulting in wear seen in Figure 1. The solution does undergo some level of solids filtering, so the wear occurs quite gradually. The pump design and construction are sound; no additional filtering is currently available.
Therefore when conducting maintenance, e.g., seal replacement, it's important to carefully examine the amount of wear and address it when necessary. Also, we've implemented vibration monitoring as part of the routine proactive maintenance applied to the pump.
The significant learning from our experience is that centrifugal pump volute casing wear can result in excessive vibration and noise — so, don't automatically assume that mechanical looseness is the cause of such problems. We now better manage long-term erosion using both visual inspection and reliability-based technology such as vibration analysis.
Tom Buono, PE, is a maintenance reliability engineer at King Industries, Norwalk, Conn. Mark Vowell, CMRP, is a technical/applications engineer for Commtest, Inc., Knoxville, Tenn. E-mail them at [email protected] and [email protected].