Our industry doesn't use energy as efficiently as it could, contend some critics. They cite plants that downgrade heat to a cooling utility or provide heat from a heating utility even when temperature levels may indicate the heat can be recovered. These faultfinders don't appreciate the importance of control.
[pullquote]
The purpose of any control system is to move a disturbance from where it's undesired to where it's unimportant. Utility systems provide a straightforward and often inexpensive method of absorbing disturbances. As a process becomes more heat-integrated, control becomes more difficult. Inability to control has real costs.
One part of a recent project involved improving unit heat integration. Figure 1 shows a section of the unit before modification. The feed goes through five heating services before heading to trim heating. The trim heating energy ultimately comes from fuel firing. The column bottoms' product goes through four cooling services before trim cooling. The trim cooling duty varied from 50% to 125% of the trim heating requirement. Temperature levels were such that the heat could be transferred with a 25°F approach temperature between the streams. At first glance, this seems an ideal match for heat recovery. So, why wasn't it being done?
One key historical reason is that both streams are fouling — the feed moderately and the bottoms highly. For most fouling services at moderate temperatures economics don't support approach temperatures less than ~35°F to ~45°F. In this case, though, the permitting and regulatory benefits of shutting down a heating service (the trim heating) were attractive.
This still leaves a second issue, control. The feed stream has both minimum and maximum temperature constraints. The necessary surface area for a new heat-integration exchanger to meet the minimum temperature requirement on the feed when fouled will overheat the feed when clean. Some type of control is needed to prevent overheating at start of run.