Having experienced three "boom/bust" cycles in manufacturing during my career, I estimate that 65% of idled plants eventually are reactivated in some form or another, with the remainder sold and moved to the Far East or scrapped. It takes just an improvement in the marketplace, some marginal economic advantage involving the cost of raw materials, or a major failure/logistical catastrophe at some other facility to drive the decision to restart a facility. Unfortunately, executives and new owners of plants often lack intimate knowledge of the equipment used in manufacturing operations. Therefore, once they identify a window of opportunity, they may impose an unrealistic deadline that can create major headaches for those involved in reactivation.
The most difficult job for those tasked with running the project is managing "expectations and communications" around the restart. There's always a significant gap between perception and reality of what it actually takes. The thought "We can get a few old hands back on site, hit the start button, and be back in operation." is delusional.
Frequently when shutting down a plant, companies don't take appropriate steps to preserve assets and ease restart. (See: "Mothballing Requires More Than Idle Thought.")
We are all familiar with the problems that magically appear after a shutdown/turnaround of only a few weeks. It's therefore no surprise that idled facilities left essentially unattended over several years become seriously degraded. Detecting and quantitatively assessing that degradation usually takes considerable time and expertise. Compounding the problem, the people most familiar with the plant, the last operating team, now likely are scattered geographically, with some retired.
APPROACHING A RESTART
A restart process has things in common with a new-build startup but can be more complicated. To provide a comprehensive and accurate estimate of cost and time an "initial major survey" of the plant and supporting utilities is essential. This survey should be very detailed. Spending money here is insurance against getting halfway through a startup and finding a fatal flaw in a major component, as was the case in a recent Florida nuclear facility.
Even when pressed, do not give an unrealistically low estimate before the inspection — it will come back to haunt you. Getting pressure vessels, tanks and fire suppression systems back into compliance can involve major expense. Discuss what it will take with your insurance representative. Figure out what is minimally acceptable at least in terms of an extended inspection schedule. Can you stretch the timescale?
Review all records and talk to knowledgeable previous shutdown participants even if they are retired. Also compare "as is" photographs to those taken at shutdown. Try to find out who has stolen what components.
Determine what engineering could be involved. Draw up restart plans item by item — write detailed work specifications.
Present and get approval of the restart cost-and-time estimate before you commit to major expenditures.
Write an environmental and health statement. Can all required permits be reestablished without major issues?
Search for knowledgeable people for the restart. Distinguish between local knowledge, skilled engineering workers and active operators. Keep timing in mind… calling back a full operating crew to watch a maintenance contractor work for several months is an avoidable waste of money.
Demand the careful and extensive use of checklists while removing both bags of desiccant and line blinds. I have dozens of stories of startup delays caused by debris stuck in control valves, blocked impulse lines, and "rogue blinds" positioned for some reason in places that nobody could understand later.
Rent or set up a few tanks and a pump(s) to facilitate quick chemical cleaning for removal of rust and residual product. The same equipment can be used to facilitate "water runs" of certain sections of plant during recommissioning.
POSSIBLE PITFALLS
I can't over-emphasize the need for early and comprehensive "risk-based inspection" using the most accurate and sophisticated methods available, such as miniature video cameras, borescopes, ultrasonic guided-wave thickness meters, etc. Don't compromise here. A simple visual inspection isn't enough given the consequences of missing a major defect.
Here are a few aspects to keep in mind:
Remember, the key is knowing where the deficiencies are, and then fixing or mitigating them early in the process.
BERNIE PRICE is CEO of Polaris Veritas Inc., a Houston-based consulting group. E-mail him at [email protected].