Welcome back. Well, howd you do on the pop quiz we had last time (CP, June, p. 42)? I hope you did well. Now, well launch into a detailed review of an actual uncertainty analysis.
We have gone through the ins and outs of random, systematic, error, uncertainty, Type A, Type B, ISO, ASME, degrees of freedom, root-sum-square, (bias), (precision), etc. [Ive used parentheses to denote dead terminology, sigh
RIP.] Now we need to see how this all works. We need to combine some data via the formulas and technologies weve learned through these many months.
So, lets take a look at some temperature uncertainties and how to handle the expression of the uncertainty in a temperature measurement. Well consider only three sources of uncertainty. This certainly is not typical, as most measurement techniques have dozens of sources of uncertainty. However, three will provide an adequate example.
Lets note a few things:
The sources of uncertainty are grouped as systematic or random. This is the engineering classification. Instead we could have grouped them as Type A or Type B, but we didnt. Why? So an engineer could understand what to do with the measurement methods if the resulting uncertainty were too large. Type A and B only designate the origin of the uncertainty sources, not the impact of the errors.There are three sources of random uncertainty. As per our usual approach, they need to be root-sum-squared (RSSed). We RSS the sx terms, not the sx terms. Why is that? Because all uncertainty analysis equations are based on the statistics of sx . When we RSS the random uncertainties, we get the 0.20, as shown in the table.There are three sources of systematic uncertainty. Two of the three have infinite degrees of freedom (assumed when the degrees of freedom, df, are not stated) and one has 12 degrees of freedom. This will cause us some problems when we assess the appropriate degrees of freedom for the uncertainty of the result and when we RSS these systematic uncertainties. We must be careful to only RSS one standard deviation for each, that is: